

Effect of Nitrogen Fertilization on Grape Berry Aromatic Potential and on Wine Aromas

Pierre Helwi, Ph.D

Assistant Professor and Extension Viticulture Specialist

Texas A&M AgriLife Extension Service

The Terroir Concept

Temperature

Radiation

Precipitation

Human factor

Viticulture practices

Winemaking

Wine quality

Soil

Composition and physical structure

Water availability

Pedoclimate

Mineral nutrition: Nitrogen (N)...

Genetic factors

Variety

Rootstock

The Terroir Concept

The Terroir Concept

Nitrogen Effect

Vine physiological consequences

Vigor

Shoot growth cessation

Yield

Ripening

Sensibility to cryptogamic diseases

• • •

Nitrogen Effect

Vine physiological consequences

Grape berry composition

Vigor

Sugar

Shoot growth cessation

Total acidity

Yield

Polyphenols

Ripening

Aroma compounds

Sensibility to cryptogamic diseases

• • •

Aroma Compounds

Aroma Compounds

Primary/Varietal Aroma Compounds

Free aroma compounds

Aroma compounds precursors

Primary/Varietal Aroma Compounds

Free aroma compounds

Aroma compounds precursors

Wolatile thiols precursors
$$\begin{array}{c} H_3C \\ CH_2 \\ CH_3 \end{array}$$

Methoxypyrazines

SBMP

(3-secbutyl-2-methoxypyrazine)

Perception threshold 1 ng L⁻¹

Level in wine $< 10 \text{ ng L}^{-1}$

IPMP

(2-isopropyl-3-methoxypyrazine)

1 ng L⁻¹ < 10 ng L⁻¹

IBMP

(3-isobutyl-2-methoxypyrazine)

2 ng L⁻¹

5-30 ng L⁻¹

Methoxypyrazines

SBMP

(3-secbutyl-2-methoxypyrazine)

1 ng L⁻¹

Perception threshold

Level in wine < 10 ng L⁻¹

IPMP

(2-isopropyl-3-methoxypyrazine)

1 ng L⁻¹

< 10 ng L⁻¹

IBMP

(3-isobutyl-2-methoxypyrazine)

2 ng L⁻¹

5-30 ng L⁻¹

IBMP

- Stable compound with levels present in must comparable to levels in wine.
- Considered negative aroma in red wines.
- In white wines, its presence (to a certain extent) can be acceptable as it gives some freshness.

IBMP

Volatile Thiols

Volatile Thiols

Non-volatile and non-odorous precursors:

- Glutathion-3SH (Glut-3SH)
- Cystein-3SH (Cys-3SH)

What's in the literature?

Many trials studied the effect of terroir components on the aroma compounds in question but none the direct and only effect of N.

<u>Direct</u> effect of vine nitrogen status on aroma compounds without interference with vine water status and vigor

Objectives

In the absence of water deficit and vigor variation

- 1. Determine the <u>direct</u> effect of vine N status on the content of :
 - IBMP and 3SH precursors in grape berries and musts
 - IBMP and 3SH in wines

2. Determine the response of *VviOMT3*, *VviGST3* and *VviGGT* to nitrogen supply

3. Search for other key genes involved in biosynthetic pathways of these aroma compounds and study their responses to nitrogen nutrition

Objectives

In the absence of water deficit and vigor variation

- 1. Determine the **direct** effect of vine N status on the content of :
 - IBMP and 3SH precursors in grape berries and musts
 - o IBMP and 3SH in wines

2. Determine the response of *VviOMT3*, *VviGST3* and *VviGGT* to nitrogen supply

3. Search for other key genes involved in biosynthetic pathways of these aroma compounds and study their responses to nitrogen nutrition

Vintages - 2013 & 2014

Vineyards (YAN < 150 mg/L)

Pessac-Léognan - Sauvignon blanc & Cabernet-Sauvignon

Sancerre - Sauvignon blanc & Pinot noir

Potted plants - Villenave d'Ornon

Vintages - 2013 & 2014

Vineyards (YAN < 150 mg/L)

Pessac-Léognan - Sauvignon blanc & Cabernet-Sauvignon

Sancerre - Sauvignon blanc & Pinot noir

Potted plants - Villenave d'Ornon

Berry sampling

Bunch closure (BC) – Mid-veraison (MV) – Mid-ripening (V+28) – Ripeness (V+35)

(9° Brix) (19° Brix) (23° Brix)

Objectives

In the absence of water deficit and vigor variation

- 1. Determine the <u>direct</u> effect of vine N status on the content of :
 - IBMP and 3SH precursors in grape berries and musts
 - IBMP and 3SH in wines

2. Determine the response of *VviOMT3*, *VviGST3* and *VviGGT* to nitrogen supply

Search for other key genes involved in biosynthetic pathways of these aroma compounds and study their responses to nitrogen nutrition

Petioles and leaf blades at veraison showed higher N status for fertilized modalities compared to control.

N-tester

Higher N status for fertilized modalities compared to control.

N-tester

Higher N status for fertilized modalities compared to control.

- 1. Nitrogen was assimilated by vines in fertilized treatments.
- 2. Fertilized treatments have higher N status compared to control.

Objectives

In the absence of water deficit and vigor variation

- 1. Determine the <u>direct</u> effect of vine N status on the content of :
 - IBMP and 3SH precursors in grape berries and musts
 - IBMP and 3SH in wines

2. Determine the response of *VviOMT3*, *VviGST3* and *VviGGT* to nitrogen supply

Search for other key genes involved in biosynthetic pathways of these aroma compounds and study their responses to nitrogen nutrition

Vine Water Status

Stem Water Potential (MPa)

Photo: Colorado State University

Absence of water deficit during the season

Vine Vigor

Primary leaf area (m²/vine)

LICOR leaf area meter

Vine Vigor

No effect of N supply on vigor.

Yield Components

No effect of N supply on yield components.

Summary

Absence of water deficit during the season

Summary

Absence of water deficit during the season

No difference in vigor and yield between treatments

Summary

Absence of water deficit during the season

No difference in vigor and yield between treatments

Difference in vine N status - Higher N status for fertilized modalities mainly for the soil N100.

<u>Direct</u> impact of vine nitrogen status on aroma compounds without interference with vine water status and vigor

IBMP – Free Aroma Compound In grape berries

No effect of vine N status on IBMP levels in grape berries

IBMP – Free Aroma Compound

No effect of vine N status on IBMP levels in wine.

No <u>direct</u> effect of vine nitrogen status on IBMP level in grape berries and wines

Vine nitrogen status does not have a direct impact on IBMP in grape berries and wines Helwi et al., 2015, Journal of Agriculture and Food Chemistry (JAFC)

Positive effect of vine N status on Glut-3SH levels in berries and must

No effect of vine N status on Cys-3SH levels in berries and must

No effect of vine N status on Cys-3SH levels in berries and must

Direct positive effect of vine nitrogen status on Glut-3SH level in berries & must and on 3SH level in wines

Independently from Cys-3SH

Vine nitrogen status and volatile thiols and their precursors from plot to transcriptome level Helwi et al., 2016, BMC Plant Biology

With N fertilization in the absence of water deficit and vigor variation:

Vine nitrogen status does not have a direct impact on IBMP in grape berries and wines

With N fertilization in the absence of water deficit and vigor variation:

With N fertilization in the absence of water deficit and vigor variation:

With N fertilization in the absence of water deficit and vigor variation:

Vine nitrogen status impacts wine 3SH and Glut-3SH contents

With N fertilization in the absence of water deficit and vigor variation:

Identification of VviGSTU19 and VviOPT, candidate genes from 3SH precursors pathway

Articles

Vine nitrogen status and volatile thiols and their precursors from plot to transcriptome level BMC Plant Biology, 2016

Effect of vine nitrogen status, grapevine variety and rootstock on berry S-glutathionylated and S-cysteinylated precursors of 3-sulfanylhexan-1-ol

Journal International des Sciences de la Vigne et du Vin, 2015

Vine nitrogen status does not have a direct impact on IBMP in grape berries and wines Journal of Agriculture and Food Chemistry, 2015

Acknowledgments

EGFV UMR1287

ECOPHYSIOLOGIE ET GÉNOMIQUE FONCTIONNELLE DE LA VIGNE

Serge Delrot
Kees van Leeuwen
Sabine Guillaumie
Ghislaine Hilbert
Eric Gomes
Claude Bonnet
Bernard Douens
Christel Renaud
Nicolas Hocquart

Jean-Pierre Petit
Jean-Paul Robert
Jean Passal Tandanna

Jean-Pascal Tandonnet
Martine Donnart

Messa Meddar
Guillaume Pacreau
Cyril Hevin

Catherine Chabirand Catherine Thioulouse

Aude Habran
Laure Fontan
Kleopatra Nikolaoy
Paul Andres
Manon Baron
Eloise Brouard
Roberta Triolo
Guillaume Lalanne
Fanny Montais
Etienne Pilard
Mathieu Castagni

Louis Gougeon

OENOLOGIE USC1366 UNITE DE RECHERCHE

Philippe Darriet Cécile Thibon Pascaline Redon Warren Albertin Sophie Tempère

SICAVAC

Sancerre

Bertrand Daulny François Dal Emeline Piton Magali Darde Anne-Lise Lapouge Suzanne Balacey

UE viticole

INRA - Villenave d'Ornon

Dominique Forget Matthieu Arroyo Willy Goupil

Soils

Hills and valleys.

3 types of soil: <u>clay and limestone</u>, limestone and siliceous clay.

Climate

Temperate with a continental influence.

Average temperatures range from 30°F in winter to 79°C in summer.

Average rainfall is 30"/year, although the growing season is relatively dry.

Steep slopes promote good drainage.

Growing Practices

Minimum planting density: 2,300 vines per acre.

Pruning: Single or double guyot; cordon de royat.

Soils

Stony sandy loam over deep, stony gravels.

Climate

Semi-continental climate

Average temperatures range from 50°F in winter to 79°F in summer.

Low rainfall (~26"/year).

Growing Practices

Pruning: cane and spur pruning.

Soils

Gravelly loamy sand
Deep and well drained
Rocky (calcareous) top soils

Climate

High desert-semi arid at 4,000' elevation.

Hot days (95°F) during season and cool nights (60°F).

Very dry; less than 11"/year.

Growing Practices

Flood and drip irrigation.

Spur pruning and bilateral cordon.

Sprawling canopy for sunlight protection.

