

80/20 rule

- In Business, 20% of your customers account for 80% of your revenue
- In Winemaking:
 - 80%: producing sound wine. The basics include good sanitation, healthy fermentations, proper DO/pH/SO2 management, and microbial control
 - 20%: beyond sound wine. This is balance, aroma/bouquet, mouthfeel, color, etc.

Increasing Shelf Life

- A wines inherent shelf life is determined by:
 - Shelf Life = Alcohol + DO
 - Of these, which can the winemaker control the MOST/EASIEST
 - DO (minimize movements, use of inert gasses, DO measurement)
 - SO2 (exogenous additions for anti-microbial & anti-oxidant activity)
 - Microbial populations (fining/settling, sanitation, filtration, inhibitors/sterilants)
 - pH (exogenous addition of tartaric/malic, picking schedule, vineyard practices)
 - Tannins (skin contact practices, exogenous additions)
 - Alcohol (picking schedule, exogenous sugar adds, yeast choice, ferm practices)

Increasing Shelf Life: Sanitation

Increasing Shelf Life: Sanitation

Increasing Shelf Life: Sanitation

- Ozone
- Great surface and air sanitizer
 - Can be dangerous to human health
 - Hard on gaskets, orings, etc
 - Surface must be CLEAN for ozone to work

Increasing Shelf Life: Minimizing Spoilage

 Texas wines: Elevated pH's (>3.6) greatly encourage microbial growth and are much more likely to spoil

pH and Wine characteristics

	Low pH (3.0 – 3.4)	High pH (3.6 – 4.0)	
Oxidation	Reduced	Increased	
Color Strength	Increased	Reduced	
Type of Color	Ruby	Browner	
Protein Stability	More Stable	Less Stable	
Bacterial Growth	Less	More	
		Ref: Elsenmann 1999	

pH Control

- Getting pH values below 3.6 has numerous benefits
 - Microbial inhibition is greatly increased
 - Cold stability:
 - <3.65pH: TA goes down (up to 2g/L) and pH drops by as much as .2 units
 - >3.65ph: TA goes down and pH increases
 - Anti microbial activity of SO2 is greatly increased by lower pH levels
- pH's above 3.6 allow for significantly more spoilage
- According to Thermo-Orion: pH meters have an accuracy of appx .5pH units. Thus, a reading of 3.6 could be 3.55-3.65

White Wine

pH and SO2 Relationship

pH and SO2 are intrinsically linked

(as shown in table)

Free SO2, while a strong inhibitor is just that.

NOT A YEAST KILLER

Many winemakers consider 0.8 molecular SO2 as a "safe zone"

The levels needed for higher pH are above the ٠ sensory threshold (~60ppm)

The levels of Free SO2 needed for microbial control may push legal limits throughout the lifespan of a wine

There is a well intentioned movement to limit the amount of SO2 that is added to wine

> >This, in part, is due to the perception that people are "allergic" to Sulphur >but can one be allergic to something that is not a protein?

0.8ppm molecular SO ₂ 0.5ppm molecular		
pH	Free SO ₂ (ppm)	Free SO ₂ (ppm)
2.9	10	6
3.0	13	7
3.1	16	10
3.2	21	12
3.3	26	14
3.4	32	17
3.5	40	23
2.6	50	30
3.7	60	37
3.8	77	47
3.9	97	62
4.0	>120	83

Barrel Aging

- The "angels share"
 - We top on a regular basis to prevent oxidation
 - What happens when you open the bung?
 - Typically a vacuum has developed
 - How much Oxygen is in a vacuum?
- So are we doing more damage than good?
- If we go to barrel ~50ppm FSO2, but have high DO + O2 rich headspace, FSO2 can deplete almost completely
 - This leaves very little FSO2 for antimicrobial and antioxidative activity
 - This equals high spoilage risk

Barrel Aging

- Tips:
 - Topping wine should be low DO, and have adequate SO2
 - Should also be "clean" wine w/o microbial populations
 - Based on experience, a winemaker may want to add SO2 during topping
 - Prior to filling barrel, inert headspace with Ar, CO2, N2
 - Alternatively, once filled, sparging with high purity N2 can "rip" DO down
 - Install gas port in bung to inert headspace prior to opening barrel
 - w/o this, O2 rich air will rush into barrel when bung is pulled

Cellar Practices

- Monitor DO levels before and after
 - Transfers
 - Additions
 - Fining
 - Receiving bulk wines
- Pumps, fittings, setups can all impact O2 pickup
- Minimize headspace

Increasing Shelf Life: Enological Products

BACTILESS

- DO mitigation: sparging, inert gas, SIY.
 - PURE-LEES LONGEVITY[™] Oconsumption rate for a dose rate at 40 g/hL is 1.7 mg/L dissolved oxygen. If the dose rate is doubled, the level of O consumption also increases. Consumption rate by this SIY yeast = 0.7 mg/L Oper hour.
- Increase tannin load: exogenous addition
- Chitosan products: Bactiless, No Brett Inside

Increasing Shelf Life: Microbial Control

Improving Shelf Life: Controlling Volatile Sulfur Compounds (VSC)

- Sources of VSC:
 - Vineyard Sprays
 - Stressed fermentations
 - Nutrition
 - Yeast strain
 - Lees contact
 - High ferm temps
 - Inadequate aeration during ferm

Volatile Sulfur Compounds (VSCs)			
Compound	Structure	Aroma	
Hydrogen sulfide	H-S-H	Rotten egg	
Methanethiol	H₃C—SH	Cooked cabbage	
Dimethyl sulfide	H ₃ C—S—CH ₃	Cabbage	
Dimethyl disulfide	H ₃ C-S-S-CH ₃	Cauliflower	
Dimethyl trisulfide	H ₃ C-S-S-CH ₃	Garlic	
Methyl thioesters		Cooked cauliflower Cheesy Chives	

VSC: Prevention and Remediation

PREVENTION

- Proper nutrition
- High YAN is not enough
- Fermentation Control
 - Temperature control
 - Yeast Strain Choice
 - Low/no producers

REMEDIATION

- Reduless
 - CuSO4

Oxidative catalyst

VSC: Expression

• Does Splash Racking Actually Work?

H2S $^{+O2}$ \rightarrow mercaptans and thiols $^{+O2}$ \rightarrow Disulphides lower sensory perception threshold -> higher sensory perception threshold Conversely Disulphides $^{-O2}$ \rightarrow mercaptans and thiols $^{-O2}$ -- \rightarrow H2S This is what is commonly referred to as "reduction"

Control your DO, get the wines reductive in the cellar, treat VSC = less likely to form in the bottle

Contacts

- Scott Laboratories Technical Group
 - 707-765-6666
 - 8 am -5 pm PST M-F
 - www.scottlab.com
 - IG: @scottlaboratories

- Luke Holcombe
- 707-790-3601
- <u>lukeh@scottlab.com</u>
- IG: @beardedwinewizard

