

Presented by SETH URBANEK, WINEMAKER WEDDING OAK WINERY

THEORY

SO₂ (SULFUR DIOXIDE) – THE GOOD, THE BAD, AND THE UGLY

Anti-Oxidant

Anti-microbial

In short, a preservative

- Sulphur has been used since Roman times
- It is present in almost all fermented products and in many prepared foods
- Why do people say they are allergic to Red Wines and sulfites?
- \bullet White wines typically have higher SO_2 levels
- Red wines that undergo native or spoilage MLF have higher potential for biogenic amines

APPLICATION METHODS

- Gas (100% SO₂) DANGER!
- Powder usually Potassium Metabisulfite (KMBS)
 - 57% by weight SO₂
 - Oxidizes over time
 - 50% in reality?
- Stock Solution
 - Useful for multiple additions at once (e.g. barrels)
 - Remember that powder weight!
 - Ex: 6.6% solution

RS Add Calculation	Adding Sugar	Print
Volume = 500 Gals Current = 2.0 g/L	11,355 g 11.4 Kg	
Target = 8.0 g/L	25.0 lbs	

SO₂ CHEMISTRY IN WINE

- SO₂ species' availability after addition to wine is pH dependent
 - Reminder: pH is an inverse logarithmic scale that measures the concentration of hydrogen ions in a solution (acidity)
 - Wine pH is typically 3.0-3.7
 - Texas wine is a whole different animal
- Molecular Anti-microbial (SO₂)
- Free Bisulfite (HSO₃-) "free" to interact with components in wine (aldehydes, quinones, pigments, etc.)
- Bound Bisulfite (HSO₃-) that is tied up by said components
- Other Sulfite ion (SO₃²⁻) negligible at wine pH

- So my pH is a problem, can't I just fix that?
 - WHY YES! BUT NO....
- pH vs Titratable Acidity (TA)
- Acidulation using Tartaric Acid (as opposed to other species)
 - lg/LH₂T lowers pH 0.1 and raises TA lg/L
 - Ex: $1g/L H_2T$ takes a wine from 3.95 and 5.0 \longrightarrow 3.85 and 6.0

MORE ON WHAT SO₂ DOES

- Free vs Total SO₂
 - Total SO₂ is the combination of *free* and *bound* SO₂ (legal limit of 350ppm in USA)
 - Total SO₂ can contribute to negative sensory impact on wine (i.e. smell of burnt match) at high concentrations (~60-80ppm)
 - Free SO₂ remains free to interact with components in the wine (e.g. biproducts of oxidation)
 - Molecular SO₂ (your anti-microbial) is a function of how much free SO₂ you have (see chart)
 - NOTE: "the book" stops at pH 3.8
 - AND you'd need A LOT of Free SO₂, not to mention keeping Total in mind to get there...

WELCOME TO THE TEXAS WINE INDUSTRY!!

WELCOME TO THE PARTY, PAL.

- MOLECULAR SO₂ is an anti-microbial.... You got none....
- When you add SO₂, some will be Free, some will get bound up (can bind to pigments!)
- The Free stuff is useful as an anti-oxidant... that's it.... Thanks Texas wine pH!
- Regularly monitor Free and Total SO₂
 - Aeration-Oxidation is easy and costeffective monitoring apparatus

PRACTICE

THE OTHER SIDE OF THE COIN

- When to add
 - Juice limit Polyphenol Oxidase (PPO) & annoy undesirable microbes (30-50ppm)
 - After Alcoholic Fermentation (AF), if Malolactic Fermentation (MLF) not desired OR after MLF, if desired (50-80ppm)
 - During extended aging (constant target of 20-35ppm free)
 - After oxygen exposure....

- Oxygen Exposure, eh?
 - Dissolved Oxygen will eat up your SO₂, so we should try to mitigate that...
 - Action in cellar Dissolved O2 (mg/L):

Topping 1 Pumping 1 - 2 Filtration 0.5 - 2.5Racking 2 - 5Racking with $O_2 4 - 8$ Cold stabilization 3.5 - 6Bottling 0 - 4Transport (full tank) 0 - 6

D.O. OR D.O. NOT...

- Dissolved Oxygen (DO) can be monitored in the cellar!
 - DO Meter
 - Monitoring Total SO₂ 1mg O₂ : 4mg TSO₂
- DO can be managed in the cellar!
 - Mitigate headspace in tanks
 - USE INERT GAS gas choice matters!
 - Manage wine temperature

A QUICK ASIDE

Have a bunch? They can act as a protective agent!

• Example: tannic red wines hold up well to oxidation

Not a whole lot? They act as a participant in your oxidation reaction

• Example: white wines with elevated tannin content may oxidize faster

FINAL USE & STRATEGY

- Use SO₂ as a tool in the toolkit
- Don't Mess with Texas wines their pH is a problem
- Explore other oxidation and microbial mitigation strategies as well
 - Oxidation
 - Can choose to remove tannins from white wine via macro-ox or fining (PVPP, Casein, Albumen, Isinglass, etc)
 - Use inert gas to keep DO low
 - Low temperatures mean more dissolved gas
 - Oxidation reaction fining (remove Cu/ Fe)
 - Monitor DO and SO₂ levels
 - Microbes
 - Low DO wine is unfriendly to many microbes
 - Non-saccharomyces yeast at harvest can limit growth
 - Other ways to limit microbial growth (e.g. lysozyme, chitosan)
 - Low temperature retards microbial growth

Chemical analysis of grapes and wine: techniques and concepts

SO₂ MONITORING

- When?
 - Juice
 - After AF, if no MLF
 - After MLF
 - Every 4-6 weeks during aging
 - After a DO pickup event
 - <u>https://www.youtube.com/watch?v=M</u> <u>VLsCiA5Og&list=PL3ahyvW-</u> <u>3wQo_THUj9i4tvMpedtsuyCFk&index</u> <u>=8</u>
 - https://www.youtube.com/watch?v=61 GduKQYtmg&list=PL3ahyvW-3wQo_THUj9i4tvMpedtsuyCFk&index =9

QUESTIONS? seth@weddingoakwinery.com

